

Logi Ad Hoc Reporting
SecureKey Configuration Guide

Version 12
July 2016

 Page 2

Ad Hoc Security Model Overview

Every Ad Hoc instance relies on a security model to determine the authentication process for a
user and the authorizations granted to the user. Ultimately, Ad Hoc must be able to determine
the user ID, their role(s) and which organization the user is associated with, regardless of the
security model chosen.

The security models include:

Standard – As the default security model, credentials supplied in a login page are verified by
interrogating the Ad Hoc metadata database associated with the instance. Users, organiza-
tions and roles must have been created by the System Administrator and are managed by the
System Administrator.

Database – Similar to the Standard security model, the Database model relies upon a data-
base external to Ad Hoc to verify the logon credentials. Users are managed outside of Ad Hoc.
Organizations and roles are managed within Ad Hoc.

Session – The user is authenticated elsewhere, typically a parent application, and the user
name is passed to Ad Hoc. Roles and organizations are managed within Ad Hoc.

NT Authentication – The user is authenticated by Windows domain security. Roles and or-
ganizations are managed within Ad Hoc. User/Role associations are adjusted by comparing
the User/Windows User Group to the User/Role(s) in the Ad Hoc metadata. This is one of the
single sign-on security models.

SecureKey – The user is authenticated by a parent application. Access to Ad Hoc is controlled
by determining if the IP address of the caller and the “approved” IP addresses match or grant
access. Roles and organizations must be managed within Ad Hoc. User/Roles are adjusted to
match the information provided by the parent application. This is one of the single sign-on se-
curity models.

This document discusses the SecureKey security model.

 Page 3

Configuring SecureKey Authentication

The Logi SecureKey authentication method is used to move the authentication of the user out-
side of Ad Hoc and into a “parent” application. It provides improved integration for applications
requiring secure access to a Logi application. It supports the "single sign-on" model while en-
hancing security because user credentials do not need to be exposed in a query string or oth-
erwise passed to Ad Hoc in order to authenticate the user.

With SecureKey, users are authenticated in a parent application. When the parent application
requires access to an Ad Hoc application, a request is made to acquire a key from background
service and exchanged between the two applications. Once established, the key can be used
only once but the authentication remains valid for the life of the session.

This section provides assistance for systems administrators who want to authenticate users
with the Logi SecureKey methodology. There are basically two steps required to configure the
application to authenticate via SecureKey:

1. Configure the application’s settings file for SecureKey authentication.
2. Code the SecureKey processing in the parent application.

Configuring the Settings File

To configure the application to use SecureKey authentication:

1. Make a backup of the _Definitions/_Settings.lgx file.

2. Open the file in a text editor, such as Notepad.

3. Locate the <Security> element code and replace it with this code:

<Security SecurityEnabled="True" AuthenticationSource="SecureKey"

CacheRights="Session" AuthenticationClientAddresses="10.10.10.1" />

4. Change the values for the AuthenticationClientAddresses attribute to the appropriate IP
addresses. This value can be determined by "pinging" the application server from the
web server hosting your Ad Hoc application. If one computer serves both purposes and
Ad Hoc is being called using localhost in the URL, enter 127.0.0.1 for this value. Multi-
ple IP addresses must be separated by commas.

5. Save the file.

 Page 4

Here’s a bit more information about the <Security> element code you’ll replace:

SecurityEnabled – This attribute enables or disables security completely.

AuthenticationSource - Specifies the security model to be used for user authentication and au-
thorization. "SecureKey" makes it possible for another application to do the authentication,

then pass the user to this application. The authenticating application calls the file rdTem-

plate/rdGetSecureKey.aspx, passing a username and possibly other information, and re-
ceives key in return. Then the authenticating application redirects the user to the Ad Hoc in-
stance, passing the key as the parameter rdSecureKey. If Roles are also passed, the user/role
relationships will be managed within Ad Hoc.

CacheRights - When set to Session, user Roles and Rights are only determined at the begin-
ning of the session. Otherwise, Roles and Rights are determined with each request. The value
Session is required when using SecureKey.

AuthenticationClientAddresses – (Required) Specifies a comma-delimited list of IP addresses
for external applications that will be requesting keys under Logi SecureKey Authentication. If
rdGetSecureKey.aspx is called with the localhost address, enter a value of 127.0.0.1 for this
attribute.

Configuring the Parent Application

The parent application is responsible for authenticating the user, establishing the link to Ad
Hoc, providing the information to properly set the session parameters, and controlling the re-
quest redirects.

Ad Hoc must ultimately be able to determine the user, roles, and organization for a user. For
existing users, all that is necessary to determine the roles and organization is the user name.
For new users, either the user information (user name, roles, organization) must be managed
via the Ad Hoc interface (or through an application using the API) or the parent application can
marshal the information and make it available to Ad Hoc via session parameters. In the latter
case, Ad Hoc will create the user and associate the user with the provided organization and
roles automatically.

The parent application must perform two actions: 1) acquire a valid key; and 2) launch the Ad
Hoc application.

 Page 5

Acquiring a Valid Key

When the user first requests a report or web page from Ad Hoc, the parent application issues a
request to Ad Hoc's Authentication Service using this format:

http://myServer/myAdHoc/rdTemplate/rdGetSecureKey.aspx?Username=bob

&ClientBrowserAddress=10.10.10.1

The Authentication Service (rdGetSecureKey) returns a secure key to the parent application. In
addition, the service also sets session information based on the parameters passed via the
URL.

In example request above, a session variable is created for the user name and set to the value
of “bob”. A session variable for the anticipated client browser address is also created and set
to “10.10.10.1”.

If users are managed wholly within Ad Hoc, the above example is sufficient information to po-
tentially grant access to Ad Hoc.

If users are to be automatically added to the Ad Hoc metadata database and have their roles
and organization associated with the user name, the request to rdSecureKey must also pass
the role and organization information. Here’s an example request:

http://myServer/myAdHoc/rdTemplate/rdGetSecureKey.aspx?Username=bob

&Roles=”End User”&ahUserGroupID=1&ClientBrowserAddress=10.10.10.1

In the example above, the request for a key process will 1) set the user name session variable
as “bob”; 2) set the roles session information as “End User”; and 3) set the ahUserGroupID as
1.

In this model, the assigned roles must exist within Logi Ad Hoc.

Launching the Ad Hoc Application

The Authentication Service returns a key to the parent application, which then redirects the us-
er's request back to Ad Hoc’s URL, now including the key as a REQUEST or POST parameter.
For example,

http://myServer/myAdHoc/Gateway.aspx?rdSecureKey=ABC123456789

 Page 6

Ad Hoc then verifies the incoming key to make sure that the request has been initiated by a
valid client and verifies that the user, roles, and organization can be determined, and then lets
the user in.

If the user, roles, and organization have been created as session information, Ad Hoc will ei-
ther create the user using the information or adjust the existing users’ roles according to the
session information provided.

For additional details and a coding example, see our document Using Logi SecureKey Authen-
tication.

Using Existing Roles

In the configuration above where the user name, organization, and roles are being passed to
Ad Hoc, the expectation is that Ad Hoc will automatically manage the user information in the
metadata. If the user does not exist in the Ad Hoc metadata database, they will be added and
assigned to the organization and the designated roles will be associated with them. If the user
exists in the metadata, the roles will be verified and adjusted to match the incoming role infor-
mation.

There are configuration models where the user information is manually created and maintained
via the Ad Hoc interface. In this scenario the SecureKey security method is not expected to
manage the user information, however, the authorization for the user still must be determined.
Since authorization is controlled by a user’s assigned roles, the security model must determine
those roles by examining the metadata database.

To accomplish that goal, a <UserRoles> element must be added in the settings file code as a
child of the <Security> element:

<Security … >

 <UserRoles Type="SQL" ID="UserRole" Source="SELECT RoleID FROM

UserRole, Users WHERE Users.UserName='@Function.UserName~' AND

UserRole.UserID = Users.UserID" ConnectionID="ahMetadata" />

</Security>

This element instructs the application to determine the user’s roles by interrogating the
metadata database based on the user name.

Obviously using this method the user information must exist in the metadata database before a
user will be granted access. New users will not be automatically created nor will the user’s
roles be adjusted using this method.

http://devnet.logianalytics.com/rdPage.aspx?rdReport=Article&dnDocID=2162#ParentApp
http://devnet.logianalytics.com/rdPage.aspx?rdReport=Article&dnDocID=2162#ParentApp

