
Logi Ad Hoc Reporting
Configuration for Load Balancing

(Sticky Sessions)

Version 11
Last Updated: March 2014

 Page 2

Table of Contents

About This Paper .. 3

What Are Sticky Sessions? ... 3

Configuration .. 4

Contact Us .. 7

 Page 3

About This Paper

This paper outlines most of the Ad Hoc configuration considerations for load
balancing in “sticky session” and “non-sticky session” configurations.

The paper does not cover other aspects of load balancing configuration or Ad
Hoc configuration.

What Are Sticky Sessions?

In a load balanced environment, there are essentially two configuration models
regarding the processing of requests; sticky sessions (also referred to a “session
affinity”) and non-sticky sessions.

In the sticky session configuration, the session is established and a server is
“assigned” to process all of the requests for the life of the session. From
Microsoft:

“The request forwarder filter is an ISAPI filter that monitors incoming requests and decides
whether to allow requests to pass through and be executed locally or forward the request to
another server, and if it must forward the request, it does the necessary preparatory work. It also
gives out and interprets routing cookies, which allow for session coherency (sticky sessions)
where a client is attached (stuck) to a single server for the lifetime of its browser session. “

In the non-sticky configuration, each request is independent of previous requests
and may be routed to any of the servers in the server pool for processing.

From an Ad Hoc configuration point of view, little has to be done to
accommodate the sticky session. Each session behaves much like a standalone
web application. For the non-sticky environment, the primary considerations are
the management of session state and centralizing the location of the data cache
repository.

 Page 4

Configuration

Background and Definitions

An ASP.NET session is defined as the period of time a unique user interacts with
a particular web application.

HTTP is a stateless protocol, in the sense that a Web server is concerned only
with the current HTTP request for any given Web page. The server retains no
knowledge of previous requests. The stateless nature of HTTP requests presents
unique challenges when writing Web applications. ASP.NET applications that
require session state to be maintained use session management techniques.

ASP.NET offers three options for the management of session state:

InProc
Session state is stored locally on the web server and is managed in
the same worker process as the ASP.NET application.

StateServer

Session state is managed by ASP.NET state service, which runs
outside of the ASP.NET worker process. The service can run local to
the web server to support web gardens or on a different server to
support web farms.

SQLServer
Session state is managed outside of the ASP.NET worker process
and is stored in a SQL Server database. Like the StateServer option,
this method can support web gardens and web farms.

Note: There may be other configuration considerations other than load balancing
affecting the session state management decision.

Management of Session State for Sticky/Non-Sticky Configurations

Typically, by default, the web server is configured to manage session information
as “InProc”. In both standalone and load balanced, sticky environments this
setting allows a single server to manage the session information for the life of the
session.

For non-sticky, load balanced configurations the session state needs to be
centrally managed. Since requests can be processed by any of the servers in the
pool, the servers need to access the state information for the session from a
common location.

Either the StateServer or SQLServer session state management options may be
configured to meet the goal of centralizing the session state information
management.

 Page 5

Configuration of the session state options is found under the ASP.NET
configuration dialog in IIS management. The details of configuring the session
state options are outside the scope of this paper.

Centralizing Data Cache for Non-Sticky Configurations

The data cache repository is, by default, the rdDataCache folder in the Ad Hoc
instance. In a standalone or sticky environment where all the requests are
processed by the same server, the default cache configuration is sufficient.

In a non-sticky environment, centralizing the data cache repository is required.

In the _Definitions/_Settings.lgx file of each instance, there is a <General>
element with a DataCacheLocation attribute. By default this is set to
"@Function.AppPhysicalPath~\rdDataCache" which identifies the path to the
cache folder. Replace this attribute value with the path to a central data cache
location in each _Settings.lgx file on each instance serving the Ad Hoc
application.

The _Settings.lgx file is an XML file that may be edited with any plain-text editor,
such as Notepad. If you also have Logi Info Studio product, you can use the
Studio to open your Logi Ad Hoc application and edit the settings file.

General Load Balancing Configuration

Ad Hoc Instances – the Ad Hoc instances must be structurally replicated across
all servers in the server pool. This includes any custom files, stylesheets,
themes, etc.

Metadata Database – in a load balanced environment, all instances must be
directed to a single metadata database. Using the Management Console, for
each Ad Hoc instance click on the Instance Configuration / Metadata
Connection to set and test the connection string to the metadata database.

Report Repository – a central repository for the report definition files is necessary
in a load balanced environment. To set the report repository for each Ad Hoc
instance, use the Management Console and click on Instance Configuration /
Application Settings / Reporting Options.

Dashboard Preferences – centralizing the repository for the dashboard
preference files is necessary in a load balanced environment. To set the
dashboard preferences repository for each Ad Hoc instance, use the
Management Console and click on Instance Configuration / Application
Settings / Reporting Options.

 Page 6

Scheduling – the Logi Ad Hoc Scheduler service must be used in a load
balanced environment. Using the Management Console, for each Ad Hoc
instance click on Instance Configuration / Scheduling and select the Logi
Scheduling Service. Provide the Server, Password, and Port Number to the
same scheduler service.

Archiving – a centralized location for archived reports is necessary in a load
balanced environment. Using the Management Console, for each Ad Hoc
instance click on Instance Configuration / Archiving and set the archive folder
and URL for the archive repository.

Note: Consult the Management Console Usage Guide for additional information
regarding the above configuration options.

Licensing – an appropriate license file (number of cpu’s) must be placed in the
root folder of each active server in the load balanced environment.

SecureKey Security – If the SecureKey authentication method is used, the
requests are managed in Application scope and the "SecureKey Shared Folder"
option must be configured in a load balanced environment.

In the _Settings.lgx file is a <Security> element. If the AuthenticationSource
attribute is set to “SecureKey”, add the SecureKeySharedFolder attribute and set
the value to a network path (e.g. “//mySharedServer/SecureKeyFolder”)

This must be added to the _Settings.lgx file for all Ad Hoc instances.

From our documentation:

Used only when AuthenticationSource="SecureKey", SecureKeySharedFolder allows SecureKey
to work in clustered configuration with web farms and web gardens.

In a single-server configuration, SecureKey keeps SecureKey requests in Application state. With
multiple servers, this information must be stored in files in this folder that is shared among the
web servers. The account used by (or impersonated by) the web application must have network
access rights to read, write and delete files from this folder.

Old files in the SecureKeyFolder are automatically deleted over time, so do not use this folder to
store other files.

 Page 7

Contact Us

For more information about other Logi Analytics products or assistance beyond
this user manual, please contact Logi Analytics in the following ways:

Corporate Headquarters

Phone: 1-888-LOGIXML (1-888-564-4965)

(703) 752-9700

Fax: (703) 995-4811

Email: info@logianalytics.com

Address: 7900 Westpark Drive, Suite A200

McLean, VA 22102

Web Site: www.logianalytics.com

Sales Department

Phone: 1-888-LOGIXML (1-888-564-4965)

(703) 752-9700

Email: sales@logianalytics.com

Customer Support

Phone: 1-888-LOGIXML (1-888-564-4965)

(703) 752-9700

Link: http://www.logianalytics.com/support/

mailto:info@logianalytics.com
http://www.logianalytics.com/
mailto:sales@logianalytics.com

