
Logi Ad Hoc
Using ActiveSQL

Version 11
Last Updated: April 2014

 P a g e | 2

Table of Contents

What is ActiveSQL? .. 3

How is ActiveSQL implemented?.. 4

What reporting databases are supported? .. 6

ActiveSQL Performance Considerations ... 6

Are there other restrictions or considerations to using ActiveSQL? 7

Known Issues .. 10

 P a g e | 3

What is ActiveSQL?

The original model for data retrieval in Logi applications involves retrieving all of the requested
data from a data source and caching it, either in memory or to disk, for use by elements that will
display the data. This generally works well and provides good performance when data volumes
are modest.

However, there are situations where utilizing the power and functionality that exists in relational
databases are a better option:

1. When SQL queries that return a large amount of data are displayed in a tabular form, it
takes a long time to process and display the first page of data. In these situations,
utilizing paging options that are supported by the SQL language and supported natively
by the database is a much faster option.

2. When Charts are generated by AdHoc, reading a large number of records in the entirety,
then sorting and grouping them in the Logi Engine is less efficient than using the data
base to sort, group and return a small number of records usually required by charts.

ActiveSQL is a special type of datalayer designed for just such a situation. It differs from
conventional datalayers in that it does not retrieve all of the rows in the initial request and, in
response to runtime manipulations of the interface by users, it dynamically modifies and
resends its initial SQL query. These helps the tabular display element work with much larger
data sets and still provide good and linear performance. It also increases the number and
frequency of SQL queries the database server must handle (which, generally, does not prove to
be a burden on the database server) but dramatically improves performance for the user.

The datalayer generates SQL queries that limit the number of rows returned, helping with
paging and sorting. With Interactive Paging in use, the query requests a number of pages of
records instead of all of the data, thereby improving perceived performance. As the user moves
beyond the first set of pages, the database is queried again to get the next set of pages.
ActiveSQL moves the bulk of the processing to the server instead of the client.

In that same vein, charts typically are based on aggregate information. ActiveSQL moves the
data aggregation back to the reporting database instead of building large XML recordsets that
would need to be processed by the engine with the traditional SQL approach. The ActiveSQL
query would return just the aggregate information needed by the chart.

Starting with Version 11.2 of Ad Hoc (engine version 11.2.40), the Ad Hoc instance may be
configured to take advantage of the benefits offered by ActiveSQL.

Additional technical information about the ActiveSQL datalayer may be found in ActiveSQL
Datalayer Documentation. This document discusses the datalayer from a Logi Info perspective.
All of the implementation details found in that paper are managed by the Ad Hoc application,
making them transparent to the end user.

http://devnet.logianalytics.com/rdPage.aspx?rdReport=Article&dnDocID=1264
http://devnet.logianalytics.com/rdPage.aspx?rdReport=Article&dnDocID=1264

 P a g e | 4

How is ActiveSQL implemented?

The generation of ActiveSQL datalayers is controlled by the ahUseActiveSQL attribute found

in the <Ad Hoc> element in the _Definitions/_Settings.lgx file of an Ad Hoc instance. If this

attribute is set to “True”, Ad Hoc will generate ActiveSQL datalayers and the engine will wrap
the traditional SELECT statements with SQL that returns a requested block of records. If the
attribute is set to “False”, the traditional SQL datalayers will be generated by Ad Hoc and the
engine will pass the SELECT statement unchanged to the data provider.

Note:
In version 11.2 of Ad Hoc, the ahUseActiveSQL attribute controls the generation and
behavior of all datalayers for all reporting connections used in the Ad Hoc instance. If
you are using reporting databases that are not in the list of supported databases for
ActiveSQL, the ahUseActiveSQL value should be set to “False”. By default, the attribute
will be set to “True” for new Ad Hoc instances created in Version 11.2. The attribute will
be set to “False” for instances upgraded to version 11.2. The ahUseActiveSQL attribute
value may only be adjusted by manually editing the _Settings.lgx file.

All of the following examples use a simple query from the Northwind database in SQL Server.

Example 1: Demonstrates the attribute disabled, the datalayer element generated by Ad Hoc,
and the resultant SQL statement passed to the SQL Server database.

From the _Settings.lgx file:
<AdHoc ahUseActiveSQL="False" … />

From the report definition file:
<DataLayer Type="SQL" ID="ahDataLayer" Source="SET ROWCOUNT 64000; SELECT

[O1].[CategoryID] AS [C1], 
[O1].[CategoryName] AS [C2],

[O1].[Description] AS [C3]
 FROM [Categories] [O1]; SET ROWCOUNT 0; "
ConnectionID="1" HandleQuotesInTokens="True" />

From a debug page:
SET ROWCOUNT 64000; SELECT
[O1].[CategoryID] AS [C1],
[O1].[CategoryName] AS [C2],

[O1].[Description] AS [C3]
FROM [Categories] [O1]; SET ROWCOUNT 0;

 P a g e | 5

Example 2: For the same query, demonstrates the attribute enabled, the datalayer generated by
Ad Hoc, and the resultant SQL statement passed to the SQL Server database.

From the _Settings.lgx file:
<AdHoc ahUseActiveSQL="True" … />

From the report definition file:
<DataLayer Type="ActiveSQL" ID="ahDataLayer" Source="SELECT 
[O1].[CategoryID] AS
[C1], 
[O1].[CategoryName] AS [C2], 
[O1].[Description] AS [C3]

FROM [Categories] [O1]" ConnectionID="1" HandleQuotesInTokens="True" SkipRowCount="True"
FirstRow="1" RowCount="15" rdResultsetGuid="e853b2a227414782b3c8709f8111c4d5" rdSortColumn=""
rdSortDirection="" />

From a debug page:
WITH PagedMembers AS (SELECT TOP 5000 [ahDataLayer].[C1], [ahDataLayer].[C2], [ahDataLayer].[C3],
ROW_NUMBER() OVER (ORDER BY [ahDataLayer].[C1]) as [lgxLogiRowNumber] FROM (SELECT
[O1].[CategoryID] AS [C1],
[O1].[CategoryName] AS [C2],
[O1].[Description] AS [C3]
FROM [Categories] [O1]) [ahDataLayer]) SELECT * FROM PagedMembers WHERE [lgxLogiRowNumber] >= 1
ORDER BY [lgxLogiRowNumber];

Example 3: For the same query with a sort sequence specified via the Ad Hoc interface,
demonstrates the datalayer generated by Ad Hoc and the resultant SQL statement passed to
the SQL Server database:

From the report definition file:
<DataLayer Type="ActiveSQL" ID="ahDataLayer" Source="SELECT 
[O1].[CategoryID] AS
[C1], 
[O1].[CategoryName] AS [C2], 
[O1].[Description] AS [C3]

FROM [Categories] [O1]" ConnectionID="1" HandleQuotesInTokens="True" SkipRowCount="True"
FirstRow="1" RowCount="15" rdResultsetGuid="efda98c1f7d145958560663f1d72c3b8" rdSortColumn=""
rdSortDirection=""><SqlSort SortColumn="C1" SortSequence="ASC" ID=""
ahActiveSqlConverted="True" /></DataLayer>

From a debug page:
WITH PagedMembers AS (SELECT TOP 5000 [ahDataLayer].[C1], [ahDataLayer].[C2], [ahDataLayer].[C3],
ROW_NUMBER() OVER (ORDER BY [ahDataLayer].[C1]) as [lgxLogiRowNumber] FROM (SELECT
[O1].[CategoryID] AS [C1],
[O1].[CategoryName] AS [C2],
[O1].[Description] AS [C3]

FROM [Categories] [O1]) [ahDataLayer]) SELECT * FROM PagedMembers WHERE [lgxLogiRowNumber] >= 1
ORDER BY [lgxLogiRowNumber];

 P a g e | 6

What reporting databases are supported?

ActiveSQL only works with

 Oracle
 MySQL
 Microsoft SQL Server 2005+
 PostgreSQL

ActiveSQL Performance Considerations

ActiveSQL depends on a well designed and tuned database for its efficiency. For example, for aggregate

queries usually necessary for charts, absence of supporting indices for aggregation will result in table

scans and poor database performance. ActiveSQL uses the “ORDER BY <column>” clause in SQL as

opposed the SORT being executed by the Logi engine. Lack of indices could result in the database using

temp tables and increasing the time to sort and display the data.

 P a g e | 7

Are there other restrictions or considerations to using ActiveSQL?

Yes, there are.

The primary restriction when ActiveSQL is enabled is that Stored Procedures may not be used as a data
objects.

When ActiveSQL is enabled, the philosophy of not returning all rows initially has an impact on the Ad
Hoc user interface and behavior. It may also be locally disabled when certain reporting constructs are
used that require a full recordset.

With ActiveSQL disabled, a Configuration / Report Configuration / Report Settings page section appears
as:

With ActiveSQL enabled, the same section of the page appears as:

 P a g e | 8

The missing attributes when ActiveSQL is enabled reflect the fact that not all of the data may be
returned, consequently information related to row counts and messaging around row counts would be
disabled.

Max Records – since the purpose of ActiveSQL is to return blocks of records as requested rather than all
of the data, a limit on the total number of records to be returned is unnecessary and has been removed
for instances with ActiveSQL enabled. Similarly, since the Max Records attribute is removed the
messages around the limits have been removed.

Attributes related to the number of records returned have been removed for the same reason.

In the Report Builder / Table Settings tab, the attributes Include Row Number and Show record count
are removed when ActiveSQL is enabled.

 P a g e | 9

In the Select Data dialog, the Sort tab will not show the Return first ___ rows attribute since ActiveSQL
processing is already returning a limited set of records to the report.

In the same Select Data dialog, the inclusion of Statistical Columns in the report will cause Ad Hoc to
generate a SQL datalayer instead of an ActiveSQL datalayer since the statistics may require a full set of
records. When a Statistical Column is added to the report, a confirmation message will be issued.

If multiple data values, multiple label columns, summary row or summary columns are requested in a
crosstab, Ad Hoc will generate a SQL datalayer instead of an ActiveSQL datalayer

 P a g e | 10

Known Issues

With ActiveSQL enabled, there may be an issue with grouped/drill style reports if the last sub-report
shows only a “text/memo” column. A simple replicator using the same data source as our examples
would be:

1) Select a data table display element or template
2) Select the Categories object as a data source
3) Include the three Category columns in the data table
4) Build a group drill report and create a grouping level with the Category ID and Category Name

columns. This will leave the Category Description column as the detail column

When the report is run, the main report will appear as:

If you click on any drill label (1 Rows), the sub-report will show:

