

Logi Ad Hoc Reporting

Load Balancing Configuration

Version 12
July 2016

 Page 2

Table of Contents

Introduction ... 3

About Sticky Sessions .. 3

Configuration Details .. 4

Session State Management ... 4

Centralizing Data Cache for Non-Sticky Configurations ... 5

General Load Balancing Configuration .. 5

Contact Us .. 7

 Page 3

Introduction

This document discusses most of the Ad Hoc configuration considerations for load balancing in
“sticky session” and “non-sticky session” configurations. It does not cover other aspects of load
balancing configuration or Ad Hoc configuration.

About Sticky Sessions

In a load balanced environment, there are essentially two configuration models regarding the
processing of requests; sticky sessions (also referred to a “session affinity”) and non-sticky
sessions.

In the sticky session configuration, the session is established and a server is “assigned” to
process all of the requests for the life of the session. From Microsoft:

“The request forwarder filter is an ISAPI filter that monitors incoming requests and decides whether to allow
requests to pass through and be executed locally or forward the request to another server, and if it must forward
the request, it does the necessary preparatory work. It also gives out and interprets routing cookies, which allow
for session coherency (sticky sessions) where a client is attached (stuck) to a single server for the lifetime of its
browser session. “

In the non-sticky configuration, each request is independent of previous requests and may be
routed to any of the servers in the server pool for processing.

From an Ad Hoc configuration point of view, little has to be done to accommodate the sticky
session. Each session behaves much like a standalone web application. For the non-sticky
environment, the primary considerations are the management of session state and centralizing
the location of the data cache repository.

 Page 4

Configuration Details

An ASP.NET session is defined as the period of time a unique user interacts with a particular
web application.

HTTP is a stateless protocol, in the sense that a Web server is concerned only with the current
HTTP request for any given Web page. The server retains no knowledge of previous requests.
The stateless nature of HTTP requests presents unique challenges when writing Web
applications. ASP.NET applications that require session state to be maintained use session
management techniques.

ASP.NET offers three options for the management of session state:

InProc Session state is stored locally on the web server and is managed in the same
worker process as the ASP.NET application.

StateServer Session state is managed by ASP.NET state service, which runs outside of
the ASP.NET worker process. The service can run local to the web server to
support web gardens or on a different server to support web farms.

SQLServer Session state is managed outside of the ASP.NET worker process and is
stored in a SQL Server database. Like the StateServer option, this method
can support web gardens and web farms.

Note: There may also be configuration considerations other than load balancing affecting the
session state management decision.

Session State Management

Typically, by default, the web server is configured to manage session information as InProc. In
both standalone and load balanced, sticky environments this setting allows a single server to
manage the session information for the life of the session.

For non-sticky, load balanced configurations the session state needs to be centrally managed.
Since requests can be processed by any of the servers in the pool, the servers need to access
the state information for the session from a common location.

Either the StateServer or SQLServer session state management options may be configured to
meet the goal of centralizing the session state information management.

 Page 5

Configuration of the session state options is found under the ASP.NET configuration dialog in
IIS management. The details of configuring the session state options are outside the scope of
this paper.

Centralizing Data Cache for Non-Sticky Configurations

The data cache repository is, by default, the rdDataCache folder in the Ad Hoc instance. In a
standalone or sticky environment where all the requests are processed by the same server,
the default cache configuration is sufficient.

In a non-sticky environment, centralizing the data cache repository is required.

In the _Definitions/_Settings.lgx file of each instance, there is a <General> element with
a DataCacheLocation attribute. By default this is set to:

@Function.AppPhysicalPath~\rdDataCache

which identifies the path to the cache folder. Replace this attribute value with the path to a

central data cache location in each _Settings.lgx file on each instance serving the Ad Hoc

application.

The _Settings.lgx file is an XML file that can be edited with any plain-text editor, such as
Notepad. If you also have Logi Info Studio product, you can use the Studio to open your Logi
Ad Hoc application and edit the settings file.

General Load Balancing Configuration

The following should be configured as suggested:

Ad Hoc Instances – The Ad Hoc instances must be structurally replicated across all servers in
the server pool. This includes any custom files, stylesheets, themes, etc.

Metadata Database – In a load balanced environment, all instances must be directed to a
single metadata database. Using the Management Console, for each Ad Hoc instance click
Instance Configuration  Metadata Connection to set and test the connection string to the
metadata database.

Report Repository – A central repository for the report definition files is necessary in a load
balanced environment. To set the report repository for each Ad Hoc instance, use the
Management Console and click Instance Configuration  Application Settings  Reporting
Options.

 Page 6

Dashboard Preferences – Centralizing the repository for the dashboard preference files is also
necessary in a load balanced environment. To set the dashboard preferences repository for
each Ad Hoc instance, use the Management Console and click Instance Configuration 
Application Settings  Reporting Options.

Scheduling – The Logi Ad Hoc Scheduler service must be used in a load balanced
environment. Using the Management Console, for each Ad Hoc instance click Instance
Configuration  Scheduling and select the Logi Scheduling Service. Provide the Server,
Password, and Port Number information to the same scheduler service.

Archiving – A centralized location for archived reports is necessary in a load balanced
environment. Using the Management Console, for each Ad Hoc instance click Instance
Configuration  Archiving and set the archive folder and URL for the archive repository.

Note: Consult the Management Console Usage Guide for additional information regarding the
above configuration options.

Licensing – An appropriate license file (for the correct number of CPUs) must be placed in the
root folder of each active server in the load balanced environment.

SecureKey Security – If the SecureKey authentication method is being used, requests are
managed in Application scope and the "SecureKey Shared Folder" option must be configured
in a load balanced environment:

In the _Settings.lgx file is a <Security> element. If its AuthenticationSource attribute is

set to “SecureKey”, add a SecureKeySharedFolder attribute and set the value to a network

path (e.g. //mySharedServer/SecureKeyFolder)

This must be added to the _Settings.lgx file for all Ad Hoc instances.

From our documentation:

Used only when AuthenticationSource="SecureKey", SecureKeySharedFolder allows SecureKey to work in
clustered configuration with web farms and web gardens.

In a single-server configuration, SecureKey keeps SecureKey requests in Application state. With multiple servers,
this information must be stored in files in this folder that is shared among the web servers. The account used by
(or impersonated by) the web application must have network access rights to read, write and delete files from this
folder.

Old files in the SecureKeyFolder are automatically deleted over time, so do not use this folder to store other files.

 Page 7

Contact Us

For more information about other Logi Analytics products or assistance beyond this user
manual, please contact Logi Analytics in the following ways:

Corporate Headquarters

Phone: 1-888-LOGIXML (1-888-564-4965)

(703) 752-9700

Fax: (703) 995-4811

Email: info@logianalytics.com

Address: 7900 Westpark Drive, Suite A200

McLean, VA 22102

Web Site: www.logianalytics.com

Sales Department

Phone: 1-888-LOGIXML (1-888-564-4965)

(703) 752-9700

Email: sales@logianalytics.com

Customer Support

Phone: 1-888-LOGIXML (1-888-564-4965)

(703) 752-9700

Link: http://www.logianalytics.com/support/

mailto:info@logianalytics.com
http://www.logianalytics.com/
mailto:sales@logianalytics.com

