
Logi Ad Hoc Reporting
Using ActiveSQL

Version 12
 July 2016

 Page 2

Table of Contents

What is ActiveSQL? .. 3

How is ActiveSQL Implemented? ... 4

Which Reporting Databases are Supported? 6

ActiveSQL Performance Considerations ... 6

Other Considerations When Using ActiveSQL 6

Known Issues .. 9

 Page 3

What is ActiveSQL?

The original model for data retrieval in Logi applications involves retrieving all of the requested
data from a data source and caching it, either in memory or to disk, for use by elements that will
display the data. This generally works well and provides good performance when data volumes
are modest.

However, there are situations where utilizing the power and functionality that exists in relational
databases are a better option. For example, when:

1. SQL queries that return a large amount of data are displayed in a tabular form, it takes a
long time to process and display the first page of data. In these situations, utilizing
paging options that are supported by the SQL language and supported natively by the
database is a much faster option.

2. Charts are generated by Ad Hoc, reading a large number of records in the entirety, then
sorting and grouping them in the Logi Engine is less efficient than using the data base to
sort, group and return a small number of records usually required by charts.

ActiveSQL is a special type of datalayer designed for these situations. It differs from
conventional datalayers in that it does not retrieve all of the rows in the initial request and, in
response to runtime manipulations of the interface by users, it dynamically modifies and
resends its initial SQL query. These helps the tabular display element work with much larger
data sets and still provide good and linear performance. It also increases the number and
frequency of SQL queries the database server must handle (which, generally, does not prove to
be a burden on the database server) but dramatically improves performance for the user.

The datalayer generates SQL queries that limit the number of rows returned, helping with
paging and sorting. With Interactive Paging in use, the query requests a number of pages of
records instead of all of the data, thereby improving perceived performance. As the user moves
beyond the first set of pages, the database is queried again to get the next set of pages.
ActiveSQL moves the bulk of the processing to the server instead of the client.

In that same vein, charts typically are based on aggregate information. ActiveSQL moves the
data aggregation back to the reporting database instead of building large XML record sets that
would need to be processed by the engine with the traditional SQL approach. The ActiveSQL
query would return just the aggregate information needed by the chart.

Starting with Version 11.2 of Ad Hoc (engine version 11.2.40), the Ad Hoc instance may be
configured to take advantage of the benefits offered by ActiveSQL.

Additional technical information about the ActiveSQL datalayer may be found in our
DataLayer.ActiveSQL documentation. This document discusses the datalayer from a Logi Info
perspective. All of the implementation details found in that paper are managed by the Ad Hoc
application, making them transparent to the end user.

http://devnet.logianalytics.com/rdPage.aspx?rdReport=Article&dnDocID=2136

 Page 4

How is ActiveSQL Implemented?

The generation of ActiveSQL datalayers is controlled by the ahUseActiveSQL attribute found in

the <Ad Hoc> element in the _Definitions/_Settings.lgx file of an Ad Hoc instance. If this

attribute is set to True, Ad Hoc will generate ActiveSQL datalayers and the engine will wrap the
traditional SELECT statements with SQL that returns a requested block of records. If the
attribute is set to False, the traditional SQL datalayers will be generated by Ad Hoc and the
engine will pass the SELECT statement unchanged to the data provider.

Here are three examples that use a simple query from the Northwind database in SQL Server:

Example 1: Demonstrates the attribute disabled, the datalayer element generated by Ad Hoc,
and the resultant SQL statement passed to the SQL Server database.

From the _Settings.lgx file: <AdHoc ahUseActiveSQL="False" … />

From the report definition file:

<DataLayer Type="SQL" ID="ahDataLayer" Source="SET ROWCOUNT 64000; SELECT


[O1].[CategoryID] AS [C1], 
[O1].[CategoryName] AS [C2],


[O1].[Description] AS [C3]
 FROM [Categories] [O1]; SET

ROWCOUNT 0; " ConnectionID="1" HandleQuotesInTokens="True" />

From a debug page:

SET ROWCOUNT 64000; SELECT

[O1].[CategoryID] AS [C1],

[O1].[CategoryName] AS [C2],

[O1].[Description] AS [C3]

FROM [Categories] [O1]; SET ROWCOUNT 0;

Note:
The ahUseActiveSQL attribute controls the generation and behavior of all datalayers for all reporting
connections used in the Ad Hoc instance. If you are using reporting databases that are not in the list of
supported databases for ActiveSQL, the ahUseActiveSQL value should be set to False. By default, the
attribute will be set to True for new Ad Hoc instances created in version 12. The attribute will be set to
False for instances upgraded to version 12. The ahUseActiveSQL attribute value can only be adjusted by
manually editing the _Settings.lgx file.

 Page 5

Example 2: For the same query, demonstrates the attribute enabled, the datalayer generated
by Ad Hoc, and the resultant SQL statement passed to the SQL Server database.

From the _Settings.lgx file: <AdHoc ahUseActiveSQL="True" … />

From the report definition file:

<DataLayer Type="ActiveSQL" ID="ahDataLayer" Source="SELECT


[O1].[CategoryID] AS [C1], 
[O1].[CategoryName] AS [C2],


[O1].[Description] AS [C3]
 FROM [Categories] [O1]"

ConnectionID="1" HandleQuotesInTokens="True" SkipRowCount="True" FirstRow="1"

RowCount="15" rdResultsetGuid="e853b2a227414782b3c8709f8111c4d5"

rdSortColumn="" rdSortDirection="" />

From a debug page:

WITH PagedMembers AS (SELECT TOP 5000 [ahDataLayer].[C1], [ahDataLayer].[C2],

[ahDataLayer].[C3], ROW_NUMBER() OVER (ORDER BY [ahDataLayer].[C1]) as

[lgxLogiRowNumber] FROM (SELECT

[O1].[CategoryID] AS [C1],

[O1].[CategoryName] AS [C2],

[O1].[Description] AS [C3]

FROM [Categories] [O1]) [ahDataLayer]) SELECT * FROM PagedMembers WHERE

[lgxLogiRowNumber] >= 1 ORDER BY [lgxLogiRowNumber];

Example 3: For the same query with a sort sequence specified via the Ad Hoc interface,
demonstrates the datalayer generated by Ad Hoc and the resultant SQL statement passed to
the SQL Server database:

From the report definition file:

<DataLayer Type="ActiveSQL" ID="ahDataLayer" Source="SELECT


[O1].[CategoryID] AS [C1], 
[O1].[CategoryName] AS [C2],


[O1].[Description] AS [C3]
 FROM [Categories] [O1]"

ConnectionID="1" HandleQuotesInTokens="True" SkipRowCount="True" FirstRow="1"

RowCount="15" rdResultsetGuid="efda98c1f7d145958560663f1d72c3b8"

rdSortColumn="" rdSortDirection=""><SqlSort SortColumn="C1"

SortSequence="ASC" ID="" ahActiveSqlConverted="True" /></DataLayer>

From a debug page:

WITH PagedMembers AS (SELECT TOP 5000 [ahDataLayer].[C1], [ahDataLayer].[C2],

[ahDataLayer].[C3], ROW_NUMBER() OVER (ORDER BY [ahDataLayer].[C1]) as

[lgxLogiRowNumber] FROM (SELECT

[O1].[CategoryID] AS [C1],

[O1].[CategoryName] AS [C2],

[O1].[Description] AS [C3]

FROM [Categories] [O1]) [ahDataLayer]) SELECT * FROM PagedMembers WHERE

[lgxLogiRowNumber] >= 1 ORDER BY [lgxLogiRowNumber];

 Page 6

Which Reporting Databases are Supported?

ActiveSQL works with these databases:

 DB2

 Microsoft SQL Server 2005+
 MySQL
 Oracle
 PostgreSQL
 Redshift (Amazon)
 Vertica (HP)

ActiveSQL Performance Considerations

ActiveSQL depends on a well-designed and tuned database for its efficiency. For example, for aggregate

queries usually necessary for charts, absence of supporting indices for aggregation will result in table

scans and poor database performance. ActiveSQL uses the “ORDER BY <column>” clause in SQL as

opposed the SORT being executed by the Logi engine. Lack of indices could result in the database using

temp tables and increasing the time to sort and display the data.

Other Considerations When Using ActiveSQL

The primary restriction when ActiveSQL is enabled is that Stored Procedures cannot be used as a data
objects.

The ActiveSQL behavior that limits the number of returned rows initially has an impact on the Ad Hoc
user interface and behavior. It may also be locally disabled when certain reporting constructs are used
that require a full recordset.

When ActiveSQL is not being used, this Configuration  Report Configuration  Report Settings page
section looks like this:

 Page 7

When ActiveSQL is enabled, the same section of the page appears as:

The hidden attributes reflect the fact that not all of the data will be returned at once; consequently
information and messaging related to row counts is unnecessary.

In the Report Builder  Table Settings tab, the attributes Include Row Number and Show record count
are also hidden when ActiveSQL is enabled:

 Page 8

In the Select Data dialog box, the Sort tab will not include the Return first ___ rows attribute because
ActiveSQL processing is already returning a limited set of records to the report:

In the same dialog box, the inclusion of Statistical Columns in the report will cause Ad Hoc to generate a
SQL datalayer instead of an ActiveSQL datalayer since the statistics may require a full set of records.
When a Statistical Column is added to the report, a confirmation message will be issued.

 Page 9

If multiple data values, multiple label columns, summary row, or summary columns are requested in a
crosstab, Ad Hoc will generate a SQL datalayer instead of an ActiveSQL datalayer.

Known Issues

With ActiveSQL enabled, there may be an issue with grouped/drill-style reports if the last sub-report
shows only a “text/memo” column. A simple replicator using the same data source as our examples
would be:

1) Select a data table display element or template.
2) Select the Categories object as a data source.
3) Include the three Category columns in the data table.
4) Build a group drill report and create a grouping level with the Category ID and Category Name

columns. This will leave the Category Description column as the detail column.

When the report is run, the main report will appear as:

If you click on any drill label (1 Rows), the sub-report will display this error message:

